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Abstract

When using item response theory (IRT) models in educational

and psychological measurement, it is standar.' ^ractice to estimate

the operating characteristics of test items from examinees' item

responses alone. This is the final report of a project that

employed Bayesian and empirical Bayesian methods to exploit

additional information that is often available about test items

(e.g., format, content, or cognitive processing requirements) or

about examinees (e.g., educational background or demographic

status). Practical and theoretical results obtained in a series

of research reports are summarized.

Key words: Bayesian Estimation, Collateral Information,

Differential Strategies, Empirical Bayes

Estimation, Information Matrices, Item Response

Theory, Missing Data
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Introduction

Item response theory (IRT) models in psychometrics give the

probability that an examinee will respond correctly to a given

test item in terms of parameters for just that examinee and that

item. This formulation makes it possible to solve many practical

measurement problems that are difficult or intractable under

classical test theory, including adaptive ability testing, large

population equating studies, and test construction to targeted

operating specifications.

It is standard practice to estimate IRT item parameters

solely from the observed responses of a sample of examinees. This

project was motivated by a desire to improve estimation by

exploiting collateral information that is often available abou:

test items (e.g., format, content, or cognitive processing

requirements) or about examinees (e.g., educational background or

demographic status). Table 1 lists the reports from the project

exploring both practical and theoretical aspects of the problem.

The present report summarizes the main results. The interested

reader is referred to the individual papers for details,

derivations, and examples.

==[===========

Table 1 about here



Incorporating Collateral Information into IRT

The initial thrusts of the project were to determine how to

incorporate collateral information into estimation procedures when

the IRT model is correct, and to gauge its impact on estimation

precision. Bayesian and empirical Bayesian methods were employed

to this end. This section describes the basic model (Mislevy,

1987; in press).

UnderanIRTmdel,theprobabilityofresponsex.to Item j

withapossiblyvector-valueditemparameter.from an examineeOj

with proficiency parameter 0 is given as

P(x.I0,0.) = f(x.10,0.) , (1)
J J J J

where the form of the item response function f is known up to the

item parameters. Under the usual assumption of local

independence, the conditional probability of the response pattern

x = (x1,...,xn) to n test items is simply the product of

expressions like (1):

P(x10,0) = H P(xj10,Pi) , (2)

where 0 (01,...,0n). Let the data matrix X =

represent response vectors observed from a sample of N examinees

from a population in which 0 follows the density p(0). The

likelihood for 0 induced by X is obtained as



Lx(01X) H 5 f(xi10,0) p(0) dO . (3)

"Marginal maximum likelihood" (MML) estimates of item parameters

(e.g., Bock and Aitkin, 1981) are obtained by maximizing (3) with

respect to 0.

Suppose that in addition to item responses, values of

-ollateral variables y are also available from examinees. The

appropriate marginal likelihood is now

L (01X,Y) H
xy

f(x.I0,0) p(Olyi) dO . (4)
. -1 -I

MML estimates of item parameters that exploit collateral

information about examinees are obtained by maximizing (4) with

respect to p (Mislevy, 1987).

Bayesian item parameter estimates are obtained from posterior

distributions for p, which arise as the normalized product of a

likelihood function such as (3) or (4) and a prior distribution

for 0, say g(0). If, before observing data, one possesses no

information to differentiate expectations about the parameters of

different items, an exchangeable prior for p is appropriate; that

is, the items are modeled as if they were n random draws from the

same distribution. In this case the posterior distribution is

given by

3



Or

p (p,x) a L (13ix) H g(fl.) (5)

Pxy(P1X,Y) a Lxy(PIX,Y) II g(pi) (6)

depending on whether collateral information is available about

examinees. If values on the collateral variable z are

additionally available about items, they are incorporated as

Or

P (MX Z) L (P1X) g(P.lz.) (7)
xz x J J

p (OIX,Y,Z) a L (OIX,Y) g(0.1z.)xyz - xy . j
(8)

(Mislevy, in press). Standard Bayesian procedures for estimating

item and population parameters that do not employ collateral

information extend to (7) and (8) in a straightforward manner

(Mislevy, 1987, in press).

Increase in Information: Theoretical Results

Using general results about missing data problems, such as

Orchard and Woodbury's (1972) "missing information principle " it

is possible to derive upper and lower bounds for the expected

precision of item parameter estimates with and without collateral

4
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information (Mislevy and Sheehan, 1988, in press). The results

are expressed most easily in Bayesian terms.

Consider first the impact of collateral information about

examinees. Let v(010 x y) represent the posterior variance of 0

that would be obtained after observing values of not only item

responses x and collateral variables y from a sample of N

examinees, but values of their latent proficiencies 0 as well.

Let analogous expressions represent posterior variance of 0 when

values of one or more types of variables are not observed; for

example, v(/3lx) when only item responses are observed. The

following relationships may be derived:

E[17(01,9,x,Y)] = Erv(Ple,x)]

Er.qpix,y)]

E[v(pp)l ,

where A:53 means that the matrix difference B-A is at least_

positive semidefinite. Thus the precision of item parameter

estimation when using collateral information about examinees along

with item responses is at least as great as that expected when

using item responses alone, but cannot exceed the precision that

would be expected with the same sample size if values of the

latent variable 0 could be observed as well.

An obvious lower bound holds the impact of collateral

information about items:

5



Empix,z)] 5 Emppoj ;

that is, expected precision when using collateral information

about items ill addition to item responses, equals or exceeds

precision expected when not using it. No ordering holds between

E[V(plx,z)] and EP7(10,X)) in general. In particular, when Z is

employed along with X, it is possible to exceed the precision

obtainable with 0 and X.

Increase in Information: Practical Results

By examining the structure of information matrices with and

without collateral information, and by applying the methods to

data from the National Assessment of Educational Progress (NAEP)

and the Profile of American Youth surveys, it was found that

modest increases in the precision of item parameter estimates can

be achieved by using collateral information (Mislevy, 1987, in

press; Mislevy and Sheehan, 1988, in press).

From collateral information about examinees, increases in

information depend on the strength of the relationship of the

collateral variables with 0. In typical educational and

psychological settings where collateral information can often

account for about a third of the population variance, and with

item reliabilities typical of those settings, gains equivalent to

2 to 6 additional test items can be expected. This gain is

substantial when few responses are available from each examinee,

as in educational assessments, and may be useful in adaptive

testing where tests are short but well-targeted. It is

6



unimpressive in individual achievement testing, where tests of

sixty items or more are common.

From collateral information about items, increeses equivalent

to hundred and fifty additional examinees were found for Rasch

item difficulty parameters in a junior high fractions test

(Mislevy, in press). While a gain of this magnitude would be

unimpressive in applications where data from thousands of

examinees is already at hand, it is meaningful in situations when

either (1) few examinees have been tested, as in the fractions

example or in local testing problems, or (2) no examinees have

been tested, as when approximating item statistics for newly-

written test items.

In addition to small-sample applications, collateral

information about items can play an important role in both item

construction and diagnosis regardless of sample size. The

conditional distributions of item parameters, p(Plz), express item

operating characteristics such as difficulty in terms of salient

features of the items. To the degree that these distributions

succeed in explaining item operating characteristics, the test

constructor can manipulate the features to modify items in

intended ways or to create new items that tap the same essential

skills. To the degree that items depart from the centers of these

predictive distributions, they are hard or easy for reasons other

than those held most important in describing the domain. Outliers

are suspect as flawed or irrelevant. The approach implied by (5)

and (6) is a step in the direction of integratinE educational and

7
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psychological theory into the measurement process. (Its

application to the items in the Document Utilization scale of the

NAEP Survey r Adult Literacy is currently in progress.)

When Collateral Information Must Be Used

The preceding sections discuss how, when all examinees are

presented all items, collateral information about examinees and

items may be exploited to obtain more precise item parameter

estimates. Consistent estimates are still obtained in this case

if the collateral information is not used (Mislevy and Sheehan,

in press). The same results apply when each examinee receives

only a random subset of items.

This is not the case that obtains in many practical

applications of IRT, however. In order to obtain more information

about item or examinee parameters per observed response, items aro

often administered to examinees as a function of item and examinee

collateral variables. Fourth grade students may be presented an

easier test form than the overlapping form fifth graders receive,

for example; and a high school graduate may be presented a harder

item first in an adaptive test than a nongraduate. In order to

obtain consistent MML item parameter estimates, it is mandatory to

employ collateral information about examinees--i.e., to use (4)

rather than (3) (Mislevy and Sheehan, in press). In order to

obtain the correct Bayesian inferences, it is mandatory to use

collateral information about items as well--i.e., to base

inferences on (8) rather than (4) (Mislevy and Wu, 1988). Mislevy



and Sheehan (in press) give a simple counterexample with the Rasch

model to demonstrate an asymptotic bias in item parameter

estimation in such a case if collateral information is ignored.

Modeling Item Responses when Different Examinees
Follow Different Solution Strategies

Initial work on using collateral information about items

assumed that the IRT model was strictly correct. Thinking about

the features of items that made them easy or hard, however, made

it clear that difficulty depends on the way that the examinees are

attempting to arrive at their answers. In particular, different

features of items can make them differentially difficult for

examinees who follow different solution strategies. This insight

led to the formulation of a mixture of IRT models (Mislevy and

Verhelst, in press). Resolving the mixture demands a type of

collateral information that plays no role whatsoever in

traditional psychometrics, including standard IRT: psychological

theory about the different strategies that examinees might follow.

The key idea is to model item difficulty in terms of salient

item features--features that tend to make an item easy or

difficult under various strategies. The Mislevy-Verhelst model

makes the following assumptions:

1. A finite number of known solution strategies apply.

2. Each examinee is applying the only one of these strategies

for all the items in the set.

9



3. The responses of an examinee are observed but the strategy

he or she has employed is not.

4. The responses of examinees following Strategy k conform to

an item response model of a known form.

5. Substantive theory posits relationships between observable

features of items and the probabilities of success enjoyed by

members of each strategy class. The relationships may be

known either fully or only partially--e.g., known as to

parametric form but not parameter values.

Let 0 (01,...,0K) be an examinee proficiency parameter,

with the element 0
k

corresponding to proficiency if Strategy k is

employed. Let 0 (01,...,0K) be an examinee strategy parameter,

with all elements zero except for the single element k

corresponding to the strategy that is employed; this element takes

the value I. Let the operating characteristics of Item j under

Strategy k be given as follows:

P[xilOklOk(zikla),Ok-1] = fk(xj0kOOk(zjkla)] ) (9)

where fik(zjkla), the item parameter for Item j that applies when

examinees follow Strategy k, depends on its salient features zjk

under that strategy and a relatively small number of basic

strategy parameters a. The MML function for estimating a induced

by the data matrix X from a sample of N examinees and the

item/strategy collateral variables Z is obtained as

10
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N K
L(a1X,Z) H E rk H fk[x..10,19,(z., 1a)) gk(0) , (10)

i-1 k-1 j=1
ij K jK

where gk is the density of Ok among those examinees following

Strategy k, and rk is the proportion of the population who do so.

If the g
k
s and the ws are not known, they too can be estimated via

MML by maximizing (10) with respect to them as well.

If the as, gks, and rs are known or well estimated, it is

possible to calculate for a given examinee the probability that

his response vector was produced wader a given strategy and to

estimate his ability under each possibility. By Bayes theorem,

the posterior probability of Strategy k and proficiency 9 under

that strategy is obtained as

P(0,0k-11x) = C fk(x10,Pk(zjk)) gk(0) Irk

where C is the normalizing constant obtained as

C
-1

- S fk
(x10,P

k jk(z )) g(0) dO nk .

k

The posterior probability that Strategy k was employed is

p(ok-lix) f P(0,0k-11x) dO

and the posterior mean proficiency conditional on Ok=1 (i.e.,

supposing that Strategy k was used) is

11



E(0
k
Ix,k 0 1) 0 P(0,0 1Ix) d0 P

-1(k0 1Ix) .

k

The si;nificance of this model lies in its ability to express

how examinees solve items rather than just how many they solve.

The latter is all that the standard models of test theory can do.

Areas of potential benefit include psychological investigations of

alternative processing models, educational decisions involving

level of understanding, and determinations of alternative mental

models in problem solving. The approach opens the door to such

applications as (1) adaptive testing schemes designed to infer how

examinees solve problems as well as how well they solve them, and

(2) studies of changes in the structure as well as the level of

intelligence in the course of human development.

Inferring Examinee Ability When Some Item Responses Are Missing

In practical applications of item response theory (IRT),

there are several reasons that item responses may not be observed

from all examinees to all test items. The reason most germane to

the collateral information problem is the intentional

administration of only subsets of items to examinees, with the

subset depending on collateral information. It was mentioned

above that collateral information must be taken into account in

these cases. In addition to this type of missingness, Mislevy and

Wu (1988) studied problems of inference that arise with several

other types of missingness that arise frequently in IRT.

To preface the results of their study, we review Rubin's

(1976) notions about "ignorability" of missing data. Ignoring the

12
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missingness process under direct likelihood inference means using

a pseudo-likelihood that includes terms for only the responses

that were observed, without regard for the processes by which they

came to be cbserved. The resulting inferences are appropriate if

the pseudo-likelihood is proportional to the correct likelihood

that does account for the missingness process. In this case the

correct point estimate of the maximum likelihood estimate (MLE) is

obtained. Sampling-distribution inferences based on the MLE are

appropriate only if the missingness pattern does not depend on the

values of the observed data. When this condition holds, sampling-

distribution inferences can be drawn with regard to repeated

samples of responses to only those items whose responses were

observed. The missingness process is ignorable with respect to

Bayesian inference if the correct Bayesian posterior is

proportional to the product of the pseudo-likelihood and an

appropriate prior distribution.

For fives common types of missingness in IRT, Mislevy and Wu

first used Rubin's (1976) theorems to determine whether

ignorability holds under direct likelihood and Bayesian inference

about examinee parameters 0 when item parameters )3 are known. In

those cases in which the correct value of the MLE is obtained

under direct likelihood inference, they asked whether sampling

distribution inferences based on the MLE were appropriate. They

then considered the analogous questions for inferences about -

when the examinee parameters are eliminated by marginalization, as



in (3)-(8). The findings are summarized below. Tables 2 and 3

highlight the results on ignorability.

1111t=1C MICIONt

Tables 2 and 3 about here

711311rillii.MCIICIIIS=MIC712113111 ilt7.0..C3IS

Case 1: Alternate Test Forms. When an examinee is assigned

one of several alternative test forms by a random process such as

a coin flip or a spiralling scheme, the process that renders

missing the responses to items on the forms not presented is

ignorable for all three types of inference, both for estimating fi

and for estimating 0 when 0 is known._

Case 2: Targeted Testing. When collateral variables such as

educational or demographic status are used to assign an examinee

one of several test forms that differ in their measurement

properties, the resulting missingness on forms not given is

ignorable under direct likelihood inference for 0 given 0, but not

under Bayesian inference unless the prior information about

examinees that led to differential assignments is conditioned on.

This information must be taken into account for both likelihood

and Bayesian inferences about 0; for Bayesian inference, prior

information about $ used to select items must additionally be
_

taken into account. Sampling distribution inferences may be based

on MLEs for 0 and for 0 given 0 , conditional on the observed

patterns of form administration within values of the examinee

variables used for targeting.

143
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It should be emphasized that these conclusions depend on the

veracity of the IRT model. In particular, it is necessary that

the regression of a correct response on ability be invariant with

respect to collateral information. This assumption may well fail

in a situation of currently increasing interest: An item pool is

calibrated using an IRT model, and a school is allowed to measure

students using only those items it deems relevant to its

curriculum. If students from different schools have had different

opportunities to learn the skills tapped by different items, then

tailoring tests to their strengths leads almost certainly to item

by school by ability interactions--a violation of the IRT model.

Estimates for schools and individuals within schools tend to

overestimate the scores they would have received had they been

given all items, or randomly selected subsets of items. This use

of IRT may hold practical value nonetheless, provided that such

scores are viewed not as consistent estimates of performance in

the total pool but as indicators of a kind of maximal performance.

Case 3: Adaptive Testing. In adaptive testing, item

assignment proceeds item by item for each examinee according to

the values of his responses to preceding items. The same

conclusions as for Case 2 hold for direct likelihood and Bayesian

inference. Ignorability under direct likelihood inference means

that the correct points are identified as MLEs of b given p and of

0. The usual MLE properties under sampling-distribution inference

need not hold, however, because the probabilities of missingness

patterns depend on the values of observed responses.

15 4



Case 4: Not-reached Items. When some examinees run out of

time before they see the last items on a nearly nonspeeded test,

the not-reached process is ignorable with respect to direct

likelihood inference about 0 given 0, and the MLE supports

sampling distribution inferences that pertain to repeated

administrations of the items that were actually reached. This

missingness process is not ignorable under Bayesian inference

unless speed and ability are independent. An only then can

direct likelihood inferences about 0 ignore the missingness.

Furthermore, Bayesian inferences about require that collateral

variables for items be employed if they played a role in

determining which items would not be reached, as when items are

ordered from easy to hard.

Case 5: Intentional Omission. When examinees are presented

items, have a chance to appraise their content, and decide for

their own reasons not to respond, the missingness is not

ignorable. Inferences must be drawn from a full model for the

joint distribution of missingness and item response.

Not surprisingly, modeling this nonignorable nonresponse is

difficult. Neither of the two most ambitious approaches proposed

to date, namely Lord's (1983) model for omits and the use of

multiple-category IRT models (e.g., Bock, 1972), handles the issue

of local independence in a fully satisfactory manner. Under

Lord's (1983) model, the marginal model for item responses is not

a standard IRT model depending on 0 alone and exhibiting local

independence. Under the multiple-category model approach, local

16
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independence fails unless all examinees at any given ability level

have the same propensity to omit items they are unsure of, rather

than guess at random.

If one assumes that examinees are perfect judges of their

chances of responding correctly, and omit only if it is in

accordance with the strategy that maximizes their expected score,

Lord's (1974) treatment of omits as fractionally correct can be

justified as providing the expectation of a conditional term in

the full likelihood for omission probabilities and correct-

response probabilities. This procedure is readily incorporated

into standard complete-data IRT algorithms and avoids having to

specify the full likelihood, but sacrifices information about

examinee and item parameters conveyed by the observed pattern of

missingness. Given the complexity of models for the full

likelihood, however, this expedient seems to be a good practical

choice--provided that, as Lord urges, examinees are clearly

informed about how omits will be scored and which omitting

strategy maximizes their chances of scoring well.

Conclusion

Although collateral information about examinees and items is

rarely employed in item response theory (IRT), it is straight-

forward to incorporate it using Bayesian and empirical Bayesian

methods. If the IRT model is correct and examinees are assigned

items independently of values on collateral variables, then

collateral information can be used to improve item parameter

estimation modestly. Employing collateral information is

17



mandatory to obtain correct Bayesian and empirical Bayesian

inferences if it was used to assign items to examinees.

Aside from considerations of efficiency, employing collateral

information about items is a step toward integrating educational

and psychological theory into the measurement process. Two

aspects of this idea were developed in the course of the project.

The first, which takes a more traditional measurement

perspective, assumes that a single IRT model provides an

acceptable fit to the data of interest. Modeling items' operating

characteristics in terms of salient features can make estimation

more precise, but more importantly it elucidates the reasons that

items are hard or easy, and why some are more discriminating than

others. A formal framework is thus available for item

construction and diagnosis, expressing relationships among

substantive theory, item features, and measurement properties.

The second is a response to a growing awareness of the fact

that traditional psychometric models (IRT as well as classical

test theory) measure what is essentially an overall level of

proficiency--losing in the process qualitative differences among

examinees that arise from different cognitive solution strategies.

In order to extend psychometric analysis to these problems, and to

bring to bear the findings of recent research upon applied

measurement problems, it is mandatory to employ collateral

information about examinees and items that bears upon the ways

that people solve problems. A mixture of IRT models that applies

to some problems of this type was introduced in the project.
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Table 2

Ignorability Results for Estimating 0 Given /3

=.1.116.1Ciat .3:1{=112

Type of Inference
Type of
Missingness Direct Likelihood Bayesian Sampling Distribution

Alternate Yes Yes Yes

Forms

Targeted
Forms

Yes Yes, given Yes

examinee variables

Adaptive
Testing

Yes Yes, given
examinee variables
if they are used

No

Not-Reached Yes No, unless speed and
ability are independent

Yes

Intentional
Omissions No No No

Conditional on the observed pattern of missingness.
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Table 3

Ignorability Results for Estimating 0 After Marginalizing over 0

================ =====

Type of
Missingness Direct Likelihood

== === ====

Type of Inference

Bayesian Sampling Distribution

Alternate Yes Yes Yes
Forms

Targeted Yes, given Yes, given Yes, given
Forms examinee variables examinee and item

variables
examinee variables

Adaptive Yes, given Yes, given No
Testing examinee variables

if they are used
item variables and
examinee variables
if they are used

Not-Reached No, unless speed No, unless speed No, unless speed
and ability are and ability are and ability are

independent independent independent

Intentional
Omissions No No No

Conditional on the observed pattern of missingness.
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